午夜成人理论福利片,天堂久久久久va久久久久,宝贝腿开大点我添添公视频免费,日本亲近相奷中文字幕,婷婷五月综合丁香在线,老太脱裤子让老头玩xxxxx,午夜福利无码不卡在线观看,精品国产一区av天美传媒,欧美日韩精品一区二区视频,日本极品少妇videossexhd

          Micromotor manufacturer Micromotor manufacturer
          0757-28980377
          Home / News

          Introduction to cross flow fan

          Time:2018-6-16 Click:
          The cross flow fan was first proposed by French engineer Mortier in 1892. The impeller is multi blade, long cylindrical and has forward multi wing blades.

          Chinese nameProposed timeProposed characterProposed location
          Cross flow fan1892 YearMortFrance

          working principle
          Cross flow fan, also known as cross flow fan, was first proposed by French engineer Mortier in 1892. The impeller is multi blade, long cylindrical and has forward multi wing blades. Its structure is shown in the right figure. When the impeller rotates, the air flow enters the cascade from the open part of the impeller, passes through the interior of the impeller, and is discharged into the volute from the cascade on the other side to form the working air flow.


          Flow of air flow in impeller

          It is very complex. The air velocity field is unstable. There is also a vortex in the impeller, and the center is near the cochlear tongue. The existence of vortex makes the output end of the impeller produce circulating flow. Outside the vortex, the air flow streamline in the impeller is in a circular arc shape. Therefore, the velocity at each point on the outer circumference of the impeller is inconsistent. The closer it is to the vortex center, the greater the velocity, and the closer it is to the vortex shell, the smaller the velocity. The air velocity and pressure at the fan outlet are not uniform, so the flow coefficient and pressure coefficient of the fan are average. The position of the vortex has a great influence on the performance of the cross flow fan. The vortex center is close to the inner circumference of the impeller and close to the worm tongue, and the fan performance is good; If the vortex center is far from the vortex tongue, the area of circulating flow increases, the fan efficiency decreases and the flow instability increases.

          Fan structure
          The cross flow fan is mainly composed of impeller, air duct and motor.


          The impeller material is generally aluminum alloy or engineering plastic. Aluminum alloy impeller has high strength, light weight and high temperature resistance, and can maintain long-term and stable operation without deformation; The plastic impeller is made by injection molding and ultrasonic welding. It is generally used in low speed occasions with large diameter.

          The air duct is generally formed by stamping metal sheet, and can also be cast by plastic or aluminum alloy. The casing adopts streamlined design, which can effectively reduce the loss of air flow and greatly improve the working efficiency of the fan.

          The motor is the power part of the cross flow fan, which can supply AC power or DC power. AC power supply mainly includes shaded pole motor and capacitor starting motor, and DC power supply is DC brushless motor. Generally, the drive motor and impeller are flexibly installed and fixed on the air duct.


          Advantages and disadvantages
          1) The axial length is not limited, and the length of the impeller can be arbitrarily selected according to different use needs;
          2) The airflow flows through the impeller and is affected by the secondary force of the blade, so the airflow can reach a long distance;
          3) No turbulence and uniform air outlet;
          4) Because the air flow is forced to turn in the impeller, the pressure head loss is large and the efficiency is low;

          Fan application
          Cooling and heat dissipation: electronic machines, dry-type transformers, photocopiers, projectors, computers, etc;
          Ventilation: rooms, public places and vehicles;
          Industrial machinery: constant temperature and drying machinery; Cold and warm room equipment;
          Household appliances: Freezer and display cabinet, air conditioning fan (air conditioning fan, building fan, tower fan), air heater, electric fireplace, air curtain machine, embedded oven, etc.

          Flow and wind pressure
          Two important parameters for the aerodynamic performance of cross flow fan are: flow and wind pressure

          flow
          Also known as air volume, it is usually measured by the volume of gas flowing through the fan per unit time. Its value shall be obtained through aerodynamic performance test. The common units of engineering include cubic meter / minute (CMM) and cubic foot / minute (CFM), 1cmm = 35.35cfm.

          AbbreviationFull nameUnit symbol
          CFSCubic feet per secondft3/s
          CFMCubic feet per minuteft3/min
          CMSCubic meter per secondm3/s
          CMMCubic meter per minutem3/min
          CMHCubic meter per hourm3/h
          L/sLiter per secondL/s
          L/minLiter per minuteL/min

          pressure
          Also known as wind pressure, it refers to the pressure rise of gas in the fan, or the difference of gas pressure at the inlet and outlet of the fan. Its common unit is Pascal (PA), which can be divided into static pressure, dynamic pressure and total pressure:
          ? static pressure PS: the pressure of the fan to overcome the ventilation resistance, which is the pressure of the gas acting on the surface of the object parallel to the air flow. It is measured through a hole perpendicular to its surface.
          ? dynamic pressure PD: dynamic pressure refers to the kinetic energy per unit volume of fluid.
          ? total pressure: it is the algebraic sum of dynamic pressure and static pressure
          Generally, the fan only adopts the fan static pressure characteristic curve (ps-q), as shown in the right figure. It is a series of wind pressure PS and air volume Q measured by changing the fan air resistance for many times. As shown in the right figure, the solid line FPC is the fan characteristic curve, which needs to be measured by wind tunnel test; The dotted line SRC is the system wind resistance, which also needs to be measured by the wind tunnel. The junction point of FPC and Src is the operating condition point OP, and QB and Pb are the corresponding air volume and air pressure.

          national standard
          GB / T 3235-1999 basic types, dimensional parameters and performance curves of fans
          GB 10080-2001 safety requirements for ventilators for air conditioning
          GB / T 1236-2000 performance test of standardized air duct for industrial fan
          GB / T 2658-1995 general specification for small AC fans
          GB / T 13933-2008 small cross flow fan
          JB / T 6444-1992 general technical conditions for fan packaging

          Introduction to Baidu Encyclopedia of cross flow fan
          日本一二三区视频在线| 国产精品福利一区二区| 办公室啪啪激烈高潮动态图| 亚洲尤码不卡av麻豆| 亚洲美女综合网| 午夜精品无码| 另类婷婷综合区小说区| 山外人精品影院| 少妇挑战三个黑人惨叫4p国语| 亚洲丁香婷婷综合久久| 色噜噜狠狠一区二区三区果冻| 亚洲精品无码av中文字幕电影网站| 日本少妇寂寞少妇aaa| 亚洲成aⅴ人片久青草影院| 亚洲成av人片在www色猫咪| 99久久无码一区人妻| 久久人人爽人人爽人人片av东京热 | 久久国产劲暴∨内射新川| 欧美性色欧美a在线播放| 日韩精品专区av无码| 国产精品无码a∨精品影院 | 欧美色就是色| ww国产内射精品后入国产| 亚洲中文字幕无码爆乳av| 制服丝袜人妻中文字幕在线| 人人妻人人澡人人爽不卡视频 | 九色精品视频| 国产毛片女人高潮叫声| 亚洲精品国产精品乱码不卡√ | 亚洲av熟妇高潮30p| 亚洲精品国产精品乱码不卡√| 国产91在线拍偷自揄拍无码 | 国产在线第一| 亚洲午夜成人精品无码APP| 精品卡一卡三卡四卡AⅤ新区| 精品国产AV色欲果冻传媒| 久久精品国产亚洲av天海翼| 无码爆乳护士让我爽| 大学生寝室白袜自慰gay网站| 久久av高清无码| 成人免费视频一区二区三区|